If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+40x+64=0
a = 2; b = 40; c = +64;
Δ = b2-4ac
Δ = 402-4·2·64
Δ = 1088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1088}=\sqrt{64*17}=\sqrt{64}*\sqrt{17}=8\sqrt{17}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{17}}{2*2}=\frac{-40-8\sqrt{17}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{17}}{2*2}=\frac{-40+8\sqrt{17}}{4} $
| k²-49=0 | | (0.67)^n=0.1 | | 2(x-2)=5(x-5)=6 | | 5x+2x+3x+5x=540 | | x/3=4/9=2 | | (x-5/12)^1/3=-2 | | (2x+24)°(3x-12)°=87 | | 0.5(2x)(x+x+10)=50 | | 14x+9=4x-19 | | 5y+8=30 | | (x+3)∗(x+6=) | | 6x-10=8x-13 | | -5x/2-8=-28 | | (2x+3)(3x-1)=(6x-1)(x-2) | | 16x+18=19x+14 | | F(x)=3×+1 | | 4x=−8x−48 | | $$4x=−8x−48 | | -7x-18=12 | | x+6/8=12 | | (12000–32)=x5/9 | | 2/3x+34=8 | | 5y+8y+2=9y+2 | | 23x+34=8 | | X/78=8/13x= | | 6x+7=2x–5 | | 3-a=+2+a | | (2x^2+3x-2)(3x+4)=0 | | 1995=0.49t+11.94 | | E=0.49t+11.94 | | X+3y/2=5 | | 10x-40=6x+18 |